Chapter 9

Partial Fractions

9.1 Introduction: A fraction is a symbol indicating the division of integers. For example, $\frac{13}{9}, \frac{2}{3}$ are fractions and are called Common Fraction. The dividend (upper number) is called the numerator $N(x)$ and the divisor (lower number) is called the denominator, $\mathrm{D}(\mathrm{x})$.

From the previous study of elementary algebra we have learnt how the sum of different fractions can be found by taking L.C.M. and then add all the fractions. For example

$$
\begin{aligned}
& \text { i) } \frac{1}{x-1}+\frac{2}{x+2}=\frac{3 x}{(x-1)(x+2)} \\
& \text { ii } \frac{2}{x+1}+\frac{1}{(x+1)^{2}}+\frac{3}{x-2}=\frac{9 x^{2}+5 x-3}{(x+1)^{2}(x-2)}
\end{aligned}
$$

Here we study the reverse process, i.e., we split up a single fraction into a number of fractions whose denominators are the factors of denominator of that fraction. These fractions are called Partial fractions.

9.2 Partial fractions:

To express a single rational fraction into the sum of two or more single rational fractions is called Partial fraction resolution.
For example,

$$
\begin{aligned}
& \frac{2 x+x^{2}-1}{x\left(x^{2}-1\right)}=\frac{1}{x}+\frac{1}{x-1}-\frac{1}{x+1} \\
& \frac{2 x+x^{2}-1}{x\left(x^{2}-1\right)} \text { is the resultant fraction and } \frac{1}{x}+\frac{1}{x-1}-\frac{1}{x+1} \text { are its }
\end{aligned}
$$

partial fractions.

9.3 Polynomial:

Any expression of the form $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots \ldots+a_{2} x^{2}+$ $a_{1} x+a_{0}$ where $a_{n}, a_{n-1}, \ldots ., a_{2}, a_{1}, a_{0}$ are real constants, if $a_{n} \neq 0$ then $P(x)$ is called polynomial of degree n.

9.4 Rational fraction:

We know that $\frac{p}{q}, q \neq 0$ is called a rational number. Similarly
the quotient of two polynomials $\frac{N(x)}{D(x)}$ where $D(x) \neq 0$, with no common factors, is called a rational fraction. A rational fraction is of two types:

9.5 Proper Fraction:

A rational fraction $\frac{N(x)}{D(x)}$ is called a proper fraction if the degree of numerator $\mathrm{N}(\mathrm{x})$ is less than the degree of Denominator $\mathrm{D}(\mathrm{x})$.

For example

$$
\begin{equation*}
\frac{9 x^{2}-9 x+6}{(x-1)(2 x-1)(x+2)} \tag{i}
\end{equation*}
$$

(ii) $\frac{6 x+27}{3 x^{3}-9 x}$

9.6 Improper Fraction:

A rational fraction $\frac{N(x)}{D(x)}$ is called an improper fraction if the degree of the Numerator $N(x)$ is greater than or equal to the degree of the Denominator $\mathrm{D}(\mathrm{x})$
For example
(i)

$$
\frac{2 x^{3}-5 x^{2}-3 x-10}{x^{2}-1}
$$

(ii) $\frac{6 x^{3}-5 x^{2}-7}{3 x^{2}-2 x-1}$

Note: An improper fraction can be expressed, by division, as the sum of a polynomial and a proper fraction.

For example:

$$
\frac{6 x^{3}+5 x^{2}-7}{3 x^{2}-2 x-1}=(2 x+3)+\frac{8 x-4}{x^{2}-2 x-1}
$$

Which is obtained as, divide $6 x^{2}+5 x^{2}-7$ by $3 x^{2}-2 x-1$ then we get a polynomial $(2 x+3)$ and a proper fraction $\frac{8 x-4}{x^{2}-2 x-1}$

9.7 Process of Finding Partial Fraction:

A proper fraction $\frac{N(x)}{D(x)}$ can be resolved into partial fractions as:
(I) If in the denominator $\mathrm{D}(\mathrm{x})$ a linear factor $(\mathrm{ax}+\mathrm{b})$ occurs and is non-repeating, its partial fraction will be of the form $\frac{\mathrm{A}}{\mathrm{ax}+\mathrm{b}}$, where A is a constant whose value is to be determined.
(II) If in the denominator $\mathrm{D}(\mathrm{x})$ a linear factor $(\mathrm{ax}+\mathrm{b})$ occurs n times, i.e., $\quad(\mathrm{ax}+\mathrm{b})^{\mathrm{n}}$, then there will be n partial fractions of the form

$$
\frac{\mathrm{A}_{1}}{\mathrm{ax}+\mathrm{b}}+\frac{\mathrm{A}_{2}}{(\mathrm{ax}+\mathrm{b})^{2}}+\frac{\mathrm{A}_{3}}{(\mathrm{ax}+\mathrm{b})^{3}}+\ldots . .+\frac{\mathrm{A}_{\mathrm{n}}}{(\mathrm{ax}+\mathrm{b})^{\mathrm{n}}}
$$

,where $A_{1}, A_{2}, A_{3}-\cdots-\cdots A_{n}$ are constants whose values are to be determined
(III) If in the denominator $\mathrm{D}(\mathrm{x})$ a quadratic factor $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ occurs and is non-repeating, its partial fraction will be of the form

$$
\frac{A x+B}{a x^{2}+b x+c}, \text { where } A \text { and } B \text { are constants whose values are to }
$$

be determined.
(IV) If in the denominator a quadratic factor $a x^{2}+b x+c$ occurs n times, i.e., $\left(a x^{2}+b x+c\right)^{n}$,then there will be n partial fractions of the form

$$
\begin{aligned}
& \frac{A_{1} x+B_{1}}{a x^{2}+b x+c}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\frac{A_{3} x+B_{3}}{\left(a x^{2}+b x+c\right)^{3}}+ \\
& ---\cdots+\frac{A_{n} x+B_{n}}{\left(a x^{2}+b x+c\right)^{n}}
\end{aligned}
$$

Where $A_{1}, A_{2}, A_{3}-\cdots-A_{n}$ and $B_{1}, B_{2}, B_{3}-\cdots-B_{n}$ are constants whose values are to be determined.
Note: The evaluation of the coefficients of the partial fractions is based on the following theorem:

If two polynomials are equal for all values of the variables, then the coefficients having same degree on both sides are equal, for example, if

$$
\begin{gathered}
\mathrm{px}^{2}+\mathrm{qx}+\mathrm{a}=2 \mathrm{x}^{2}-3 \mathrm{x}+5 \quad \forall \mathrm{x}, \text { then } \\
\mathrm{p}=2, \quad \mathrm{q}=-3 \text { and } \mathrm{a}=5
\end{gathered}
$$

9.8 Type I

When the factors of the denominator are all linear and distinct i.e., non repeating.

Example 1:

Resolve $\frac{7 x-25}{(x-3)(x-4)}$ into partial fractions.

Solution:

$$
\begin{equation*}
\frac{7 x-25}{(x-3)(x-4)}=\frac{A}{x-3}+\frac{B}{x-4} \tag{1}
\end{equation*}
$$

Multiplying both sides by L.C.M. i.e., $(x-3)(x-4)$, we get

$$
\begin{aligned}
7 x-25 & =A(x-4)+B(x-3) \\
7 x-25 & =A x-4 A+B x-3 B
\end{aligned}
$$

$$
7 x-25=A x+B x-4 A-3 B
$$

$$
7 x-25=(A+B) x-4 A-3 B
$$

Comparing the co-efficients of like powers of x on both sides, we have

$$
\begin{aligned}
& 7=A+B \text { and } \\
& -25=-4 A-3 B
\end{aligned}
$$

Solving these equation we get

$$
\mathrm{A}=4 \text { and } \mathrm{B}=3
$$

Hence the required partial fractions are:

$$
\frac{7 x-25}{(x-3)(x-4)}=\frac{4}{x-3}+\frac{3}{x-4}
$$

Alternative Method:

Since $7 x-25=A(x-4)+B(x-3)$
Put $\quad x-4=0, \Rightarrow x=4$ in equation (2)

$$
7(4)-25=A(4-4)+B(4-3)
$$

$$
28-25=0+B(1)
$$

$$
B=3
$$

Put $x-3=0 \Rightarrow x=3$ in equation (2)
$7(3)-25=\mathrm{A}(3-4)+\mathrm{B}(3-3)$
$21-25=\mathrm{A}(-1)+0$
$-4=-\mathrm{A}$
$A=4$
Hence the required partial fractions are

$$
\frac{7 x-25}{(x-3)(x-4)}=\frac{4}{x-3}+\frac{3}{x-4}
$$

Note : The R.H.S of equation (1) is the identity equation of L.H.S

Example 2:

write the identity equation of $\frac{7 x-25}{(x-3)(x-4)}$
Solution : The identity equation of $\frac{7 x-25}{(x-3)(x-4)}$ is

$$
\frac{7 \mathrm{x}-25}{(\mathrm{x}-3)(\mathrm{x}-4)}=\frac{A}{x-3}+\frac{B}{x-4}
$$

Example 3:

Resolve into partial fraction: $\frac{1}{\mathrm{x}^{2}-1}$
Solutios: $\quad \frac{1}{x^{2}-1}=\frac{A}{x-1}+\frac{B}{x+1}$

$$
\begin{array}{cl}
1=\mathrm{A}(\mathrm{x}+1)+\mathrm{B}(\mathrm{x}-1) \\
\text { Put } \quad \mathrm{x}-1=0, & \Rightarrow \tag{1}\\
\mathrm{x}=1 \text { in equation }(1) \\
1=\mathrm{A}(1+1)+\mathrm{B}(1-1) \quad & \Rightarrow
\end{array} \quad \mathrm{A}=\frac{1}{2} .4
$$

$$
\begin{aligned}
& \text { Put } \quad x+1=0, \quad \Rightarrow \quad x=-1 \text { in equation (1) } \\
& 1=A(-1+1)+B(-1-1) \\
& 1=-2 B, \quad \Rightarrow \quad B=\frac{1}{2} \\
& \frac{1}{x^{2}-1}= \frac{1}{2(x-1)}-\frac{1}{2(x+1)}
\end{aligned}
$$

Example 4:

Resolve into partial fractions $\frac{6 x^{3}+5 x^{2}-7}{3 x^{2}-2 x-1}$

Solution:

This is an improper fraction first we convert it into a polynomial and a proper fraction by division.

$$
\begin{aligned}
& \frac{6 x^{3}+5 x^{2}-7}{3 x^{2}-2 x-1}=(2 x+3)+\frac{8 x-4}{x^{2}-2 x-1} \\
& \text { Let } \quad \frac{8 x-4}{x^{2}-2 x-1}=\frac{8 x-4}{(3 x+1)}=\frac{A}{x-1}+\frac{B}{3 x+1}
\end{aligned}
$$

Multiplying both sides by $(x-1)(3 x+1)$ we get

$$
\begin{equation*}
8 x-4=A(3 x+1)+B(x-1) \tag{I}
\end{equation*}
$$

Put $\quad x-1=0, \Rightarrow x=1$ in (I), we get
The value of A

$$
\begin{aligned}
8(1)-4 & =\mathrm{A}(3(1)+1)+\mathrm{B}(1-1) \\
8-4 & =\mathrm{A}(3+1)+0 \\
\Rightarrow \quad 4 & =4 \mathrm{~A} \\
\Rightarrow \quad \mathrm{~A} & =1
\end{aligned}
$$

Put $3 x+1=0 \Rightarrow x=-\frac{1}{3}$ in (I)

$$
\begin{aligned}
& 8\left(-\frac{1}{3}\right)-4=\mathrm{B}\left(-\frac{1}{3}-1\right) \\
& -\frac{8}{3}-4=\left(-\frac{4}{3}\right) \\
& -\frac{20}{3}=-\frac{4}{3} \mathrm{~B} \\
\Rightarrow \quad & \mathrm{~B}=\frac{20}{3} \times \frac{3}{4}=5
\end{aligned}
$$

Hence the required partial fractions are

$$
\frac{6 x^{3}+5 x^{2}-7}{3 x^{2}-2 x-1}=(2 x+3)+\frac{1}{x-1}+\frac{5}{3 x+1}
$$

Example 5:

Resolve into partial fraction $\frac{8 x-8}{x^{3}-2 x^{2}-8 x}$
Solution: $\quad \frac{8 x-8}{x^{3}-2 x^{2}-8 x}=\frac{8 x-8}{x\left(x^{2}-2 x-8\right)}=\frac{8 x-8}{x(x-4)(x+2)}$
Let $\frac{8 x-8}{x^{3}-2 x^{2}-8 x}=\frac{A}{x}+\frac{B}{x-4}+\frac{C}{x+2}$
Multiplying both sides by L.C.M. i.e., $x(x-4)(x+2)$

$$
\begin{equation*}
8 x-8=A(x-4)(x+2)+B x(x+2)+C x(x-4) \tag{I}
\end{equation*}
$$

Put $x=0$ in equation (I), we have

$$
\begin{aligned}
& 8(0)-8=\mathrm{A}(0-4)(0+2)+\mathrm{B}(0)(0+2)+\mathrm{C}(0)(0-4) \\
\Rightarrow \quad & -8=-8 \mathrm{~A}+0+0 \\
\Rightarrow \quad & \mathrm{~A}=1
\end{aligned}
$$

Put $\mathrm{x}-4=0 \Rightarrow \mathrm{x}=4$ in Equation (I), we have

$$
8(4)-8=B(4)(4+2)
$$

$$
32-8=24 \mathrm{~B}
$$

$$
24=24 B
$$

$$
\Rightarrow \quad B=1
$$

Put $\mathrm{x}+2=0 \Rightarrow \mathrm{x}=-2$ in Eq. (I), we have

$$
\begin{aligned}
& 8(-2)-8=C(-2)(-2-4) \\
& -16-8=C(-2)(-6) \\
& -24=12 C
\end{aligned}
$$

$$
\Rightarrow \quad C=-2
$$

Hence the required partial fractions

$$
\frac{8 x-8}{x^{3}-2 x^{2}-8 x}=\frac{1}{x}-\frac{1}{x-4}-\frac{2}{x+2}
$$

Exercise 9.1

Resolve into partial fraction:

Q. $1 \frac{2 x+3}{(x-2)(x+5)}$
Q. $2 \frac{2 x+5}{x^{2}+5 x+6}$
Q. $3 \frac{3 x^{2}-2 x-5}{(x-2)(x+2)(x+3)}$
Q. $4 \frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-6)}$
Q. $5 \frac{x}{(x-a)(x-b)(x-c)}$
Q. $6 \frac{1}{(1-a x)(1-b x)(1-c x)}$
Q. $7 \frac{2 x^{3}-x^{2}+1}{(x+3)(x-1)(x+5)}$
Q. $8 \frac{1}{(1-x)(1-2 x)(1-3 x)}$
Q. $9 \frac{6 x+27}{4 x^{3}-9 x}$
Q. $10 \frac{9 x^{2}-9 x+6}{(x-1)(2 x-1)(x+2)}$
Q. $11 \frac{x^{4}}{(x-1)(x-2)(x-3)}$
Q. $12 \frac{2 \mathrm{x}^{3}+\mathrm{x}^{2}-\mathrm{x}-3}{\mathrm{x}(\mathrm{x}-1)(2 \mathrm{x}+3)}$

Answers 9.1

Q. $1 \frac{1}{x-2}+\frac{1}{x+5}$
Q. $2 \frac{1}{x+2}+\frac{1}{x+3}$
Q. $3 \frac{3}{20(\mathrm{x}-2)}-\frac{11}{4(\mathrm{x}-2)}+\frac{28}{5(\mathrm{x}+3)}$
Q. $4 \quad 1+\frac{3}{\mathrm{x}-4}-\frac{24}{\mathrm{x}-5}+\frac{30}{\mathrm{x}-6}$
Q. $5 \frac{a}{(a-b)(a-c)(x-a)}+\frac{b}{(b-a)(b-c)(x-b)}+\frac{c}{(c-b)(c-a)(x-c)}$
Q. $6 \frac{a^{2}}{(a-b)(a-c)(1-a x)}+\frac{b^{2}}{(b-a)(b-c)(1-b x)}+\frac{c^{2}}{(c-b)(c-a)(1-c x)}$
Q. $7 \quad 2+\frac{31}{4(x+3)}+\frac{1}{12(x-1)}-\frac{137}{6(x+5)}$
Q. $8 \frac{1}{2(1-x)}-\frac{4}{(1-2 x)}+\frac{9}{2(1-3 x)}$
Q. $9 \frac{3}{x}+\frac{4}{2 x-3}+\frac{2}{2 x+3}$
Q. $10 \frac{2}{x-1}-\frac{3}{2 x-1}+\frac{4}{x+12}$
Q. $11 \quad x+6+\frac{1}{2(x-1)}-\frac{16}{x-2}+\frac{81}{2(x-3)}$
Q. $121+\frac{1}{x}-\frac{1}{5(x-1)}-\frac{8}{5(2 x+3)}$

9.9 Type II:

When the factors of the denominator are all linear but some are repeated.

Example 1:

Resolve into partial fractions: $\frac{x^{2}-3 x+1}{(x-1)^{2}(x-2)}$
Solution:

$$
\frac{x^{2}-3 x+1}{(x-1)^{2}(x-2)}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x-2}
$$

Multiplying both sides by L.C.M. i.e., $(x-1)^{2}(x-2)$, we get

$$
x^{2}-3 x+1=A(x-1)(x-2)+B(x-2)+C(x-1)^{2}(I)
$$

Putting $x-1=0 \quad \Rightarrow \quad x=1$ in (I), then
$(1)^{2}-3(1)+1=B(1-2)$
$1-3+1=-\mathrm{B}$
$-1=-\mathrm{B}$
$\Rightarrow \quad B=1$
Putting $x-2=0 \quad \Rightarrow \quad x=2$ in (I), then

$$
\begin{aligned}
& (2)^{2}-3(2)+1=C(2-1)^{2} \\
& 4-6+1=C(1)^{2}
\end{aligned}
$$

$$
\Rightarrow \quad-1=C
$$

Now $x^{2}-3 x+1=A\left(x^{2}-3 x+2\right)+B(x-2)+C\left(x^{2}-2 x+1\right)$
Comparing the co-efficient of like powers of x on both sides, we get
$A+C=1$
$\mathrm{A}=1-\mathrm{C}$
$=1-(-1)$

$$
=1+1=2
$$

$\Rightarrow \quad A=2$
Hence the required partial fractions are

$$
\frac{x^{2}-3 x+1}{(x-1)^{2}(x-2)}=\frac{2}{x-1}+\frac{1}{(x-1)^{2}}+\frac{1}{x-2}
$$

Example 2:

Resolve into partial fraction $\frac{1}{x^{4}(x+1)}$

Solution

$$
\frac{1}{x^{4}(x+1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x^{3}}+\frac{D}{x^{4}}+\frac{E}{x+1}
$$

Where A, B, C, D and E are constants. To find these constants multiplying both sides by L.C.M. i.e., $\mathrm{x}^{4}(\mathrm{x}+1)$, we get

$$
1=A\left(x^{3}\right)(x+1)+B x^{2}(x+1)+C x(x+1)+D(x+1)+E x^{4}
$$

Putting

$$
\begin{align*}
& \mathrm{x}=-1 \text { in Eq. (I) } \tag{I}\\
& 1=\mathrm{E}(-1)^{4} \\
& \Rightarrow \quad \mathrm{E}=1 \\
& \text { Putting } \mathrm{x}=0 \text { in Eq. (I), we have }
\end{align*}
$$

$$
\begin{aligned}
& 1=\mathrm{D}(0+1) \\
& 1=\mathrm{D} \\
& \mathrm{D}=1 \\
& 1=\mathrm{A}\left(\mathrm{x}^{4}+\mathrm{x}^{3}\right)+\mathrm{B}\left(\mathrm{x}^{3}+\mathrm{x}^{2}\right)+\mathrm{C}\left(\mathrm{x}^{2}+\mathrm{x}\right)+\mathrm{D}(\mathrm{x}+1)+\mathrm{Ex}
\end{aligned}
$$

Comparing the co-efficient of like powers of x on both sides.
Co-efficient of x^{3} : $\mathrm{A}+\mathrm{B}=0$
(i)

Co-efficient of x^{2} : $\quad \mathrm{B}+\mathrm{C}=0$
(ii)

Co-efficient of $\mathrm{x}: \mathrm{C}+\mathrm{D}=0$
Putting the value of $\mathrm{D}=1$ in (iii)

$$
\begin{array}{ll}
& \mathrm{C}+1=0 \\
\Rightarrow & \mathrm{C}=-1
\end{array}
$$

Putting this value in (ii), we get

$$
\begin{array}{ll}
& \mathrm{B}-1=0 \\
\Rightarrow \quad & \mathrm{~B}=1
\end{array}
$$

Putting $\mathrm{B}=1$ in (i), we have

$$
\begin{array}{ll}
& \mathrm{A}+1=0 \\
\Rightarrow \quad & \mathrm{~A}=-1
\end{array}
$$

Hence the required partial fraction are

$$
\frac{1}{x^{4}(x+1)}=\frac{-1}{x}+\frac{1}{x^{2}}-\frac{1}{x^{3}}+\frac{1}{x^{4}}+\frac{1}{x+1}
$$

Example 3:

Resolve into partial fractions $\frac{4+7 x}{(2+3 x)(1+x)^{2}}$

Solution:

$$
\begin{equation*}
\frac{4+7 x}{(2+3 x)(1+x)^{2}}=\frac{A}{2+3 x}+\frac{B}{1+x}+\frac{C}{(1+x)^{2}} \tag{I}
\end{equation*}
$$

Multiplying both sides by L.C.M. i.e., $(2+3 x)(1+x)^{2}$
We get $\quad 4+7 \mathrm{x}=\mathrm{A}(1+\mathrm{x})^{2}+\mathrm{B}(2+3 \mathrm{x})(1+\mathrm{x})+\mathrm{C}(2+3 \mathrm{x})$.

$$
\begin{aligned}
& \text { Put } 2+3 \mathrm{x}=0 \quad \Rightarrow \quad \mathrm{x}=-\frac{2}{3} \text { in (I) } \\
& \text { Then } 4+7\left(-\frac{2}{3}\right)=\mathrm{A}\left(1-\frac{2}{3}\right)^{2} \\
& 4-\frac{14}{3}=\mathrm{A}\left(-\frac{1}{3}\right)^{2} \\
& -\frac{2}{3}=\frac{1}{9} \mathrm{~A} \\
& \Rightarrow \quad \mathrm{~A}=\frac{-2}{3} \times \frac{9}{1}=-6 \\
& A=-6 \\
& \text { Put } \quad 1+x=0 \quad \Rightarrow \quad x=-1 \text { in eq. (I), we get } \\
& 4+7(-1)=\mathrm{C}(2-3) \\
& 4-7=\mathrm{C}(-1) \\
& -3=-C \\
& \Rightarrow \quad C=3 \\
& 4+7 x=A\left(x^{2}+2 x+1\right)+B\left(2+5 x+3 x^{2}\right)+C(2+3 x)
\end{aligned}
$$

Comparing the co-efficient of x^{2} on both sides

$$
\begin{aligned}
& A+3 B=0 \\
& -6+3 B=0 \\
& 3 B=6 \\
& B=2
\end{aligned}
$$

Hence the required partial fraction will be

$$
\frac{-6}{2+3 x}+\frac{2}{1+x}+\frac{3}{(1+x)^{2}}
$$

Exercise 4.2

Resolve into partial fraction:

Q. $1 \frac{x+4}{(x-2)^{2}(x+1)}$
Q2. $\frac{1}{(x+1)\left(x^{2}-1\right)}$
Q. $3 \frac{4 x^{3}}{(x+1)^{2}\left(x^{2}-1\right)}$
Q. $4 \frac{2 x+1}{(x+3)(x-1)(x+2)^{2}}$
Q. $5 \frac{6 x^{2}-11 x-32}{(x+6)(x+1)^{2}}$
Q. $6 \frac{x^{2}-x-3}{(x-1)^{3}}$

Applied Math
Q. $7 \frac{5 x^{2}+36 x-27}{x^{4}-6 x^{3}+9 x^{2}}$
Q. $8 \frac{4 x^{2}-13 x}{(x+3)(x-2)^{2}}$
Q. $9 \quad \frac{x^{4}+1}{x^{2}(x-1)}$
Q. $10 \frac{x^{3}-8 x^{2}+17 x+1}{(x-3)^{3}}$
Q. $11 \frac{x^{2}}{(x-1)^{3}(x+2)}$
Q. $12 \frac{2 x+1}{(x+2)(x-3)^{2}}$

Answers4.2

Q. $1-\frac{1}{3(x-2)}+\frac{2}{(x-2)^{2}}+\frac{1}{3(x+1)}$
Q. $2 \frac{1}{4(x-1)}-\frac{1}{4(x+1)}-\frac{1}{2(x+1)^{2}}$
Q. $3 \frac{1}{2(x-1)}+\frac{7}{2(x+1)}-\frac{5}{(x+1)^{2}}+\frac{2}{(x+1)^{3}}$
Q. $4 \frac{5}{4(x+3)}+\frac{1}{12(x-1)}-\frac{4}{3(x+2)}+\frac{1}{(x+2)^{2}}$
Q. $5 \frac{10}{x+6}-\frac{4}{x+1}-\frac{3}{(x-1)^{2}}$
Q. $6 \frac{1}{x-1}+\frac{1}{(x-1)^{2}}-\frac{3}{(x-1)^{3}}$
Q. $7 \frac{2}{x}-\frac{3}{x^{2}}-\frac{2}{(x-3)}+\frac{14}{(x-3)^{2}}$
Q. $8 \frac{3}{x+3}+\frac{1}{x-2}-\frac{2}{(x-2)^{2}}$
Q. $9 \quad \mathrm{x}+1-\frac{1}{\mathrm{x}}-\frac{1}{\mathrm{x}^{2}}+\frac{2}{\mathrm{x}-1}$
Q. $101+\frac{1}{x-3}-\frac{4}{(x-3)^{2}}+\frac{7}{(x-3)^{3}}$
Q. $11 \frac{4}{27(x-1)}+\frac{5}{9(x-1)^{2}}+\frac{1}{3(x-1)^{3}}-\frac{4}{27(x+2)}$
Q. $12-\frac{3}{25(x+2)}+\frac{3}{25(x-3)}+\frac{7}{5(x-3)^{2}}$

9.10 Type III:

When the denominator contains ir-reducible quadratic factors which are non-repeated.

Example 1:

Resolve into partial fractions $\frac{9 x-7}{(x+3)\left(x^{2}+1\right)}$

Solution:

$$
\frac{9 x-7}{(x+3)\left(x^{2}+1\right)}=\frac{A}{x+3}+\frac{B x+C}{x^{2}+1}
$$

Multiplying both sides by L.C.M. i.e., $(x+3)\left(x^{2}+1\right)$, we get

$$
\begin{equation*}
9 x-7=A\left(x^{2}+1\right)+(B x+C)(x+3) \tag{I}
\end{equation*}
$$

Put $x+3=0 \quad \Rightarrow \quad x=-3$ in Eq. (I), we have $9(-3)-7=\mathrm{A}\left((-3)^{2}+1\right)+(\mathrm{B}(-3)+\mathrm{C})(-3+3)$

$$
\begin{array}{ll}
-27-7=10 A+0 \\
A=-\frac{34}{10} & \Rightarrow
\end{array} \quad \mathrm{~A}=-\frac{17}{5}
$$

$$
9 x-7=A\left(x^{2}+1\right)+B\left(x^{2}+3 x\right)+C(x+3)
$$

Comparing the co-efficient of like powers of x on both sides

$$
\begin{aligned}
& A+B=0 \\
& 3 B+C=9
\end{aligned}
$$

Putting value of A in Eq. (i)

$$
-\frac{17}{5}+B=0 \quad \Rightarrow \quad B=\frac{17}{5}
$$

From Eq. (iii)

$$
\begin{aligned}
& C=9-3 B=9-3\left(\frac{17}{4}\right) \\
& =9-\frac{51}{5} \Rightarrow \quad C=-\frac{6}{5}
\end{aligned}
$$

Hence the required partial fraction are

$$
\frac{-17}{5(x+3)}+\frac{17 x-6}{5\left(x^{2}+1\right)}
$$

Example 2:

Resolve into partial fraction $\frac{x^{2}+1}{x^{4}+x^{2}+1}$
Solution:

Let $\frac{x^{2}+1}{x^{4}+x^{2}+1}=\frac{x^{2}+1}{\left(x^{2}-x+1\right)\left(x^{2}+x+1\right)}$
$\frac{x^{2}+1}{\left(x^{2}-x+1\right)\left(x^{2}+x+1\right)}=\frac{A x+B}{\left(x^{2}-x+1\right)}+\frac{C x+D}{\left(x^{2}+x+1\right)}$
Multiplying both sides by L.C.M. i.e., $\left(x^{2}-x+1\right)\left(x^{2}+x+1\right)$
$x^{2}+1=(A x+B)\left(x^{2}+x+1\right)+(C x+D)\left(x^{2}-x+1\right)$
Comparing the co-efficient of like powers of x, we have
Co-efficient of $x^{3} \quad: \quad A+C=0$
Co-efficient of $x^{2} \quad: \quad A+B-C+D=1$
Co-efficient of $x \quad: \quad A+B+C-D=0$
Constant
$B+D=1$
Subtract (iv) from (ii) we have

$$
\begin{align*}
& A-C=0 \tag{v}\\
& A=C
\end{align*}
$$

Adding (i) and (v), we have

$$
\mathrm{A}=0
$$

Putting $\mathrm{A}=0$ in (vi), we have

$$
\mathrm{C}=0
$$

Putting the value of A and C in (iii), we have

$$
\begin{equation*}
B-D=0 \tag{vii}
\end{equation*}
$$

Adding (iv) and (vii)

$$
2 B=1 \quad \Rightarrow \quad B=\frac{1}{2}
$$

from (vii) $\mathrm{B}=\mathrm{D}$, therefore

$$
\mathrm{D}=\frac{1}{2}
$$

Hence the required partial fraction are

$$
\begin{aligned}
& \frac{0 x+\frac{1}{2}}{\left(x^{2}-x+1\right)}+\frac{0 x+\frac{1}{2}}{\left(x^{2}+x+1\right)} \\
\text { i.e., } & \frac{1}{2\left(x^{2}-x+1\right)}+\frac{1}{2\left(x^{2}+x+1\right)}
\end{aligned}
$$

Exercise 4.3

Resolve into partial fraction:

Q. $1 \frac{x^{2}+3 x-1}{(x-2)\left(x^{2}+5\right)} \quad$ Q. $2 \quad \frac{x^{2}-x+2}{(x+1)\left(x^{2}+3\right)}$
Q. $3 \frac{3 x+7}{(x+3)\left(x^{2}+1\right)}$
Q. $4 \frac{1}{\left(\mathrm{x}^{3}+1\right)}$
Q. $5 \quad \frac{1}{(x+1)\left(x^{2}+1\right)}$
Q. $6 \frac{3 x+7}{\left(x^{2}+x+1\right)\left(x^{2}-4\right)}$
Q. $7 \frac{3 x^{2}-x+1}{(x+1)\left(x^{2}-x+3\right)}$
Q. $8 \frac{x+a}{x^{2}(x-a)\left(x^{2}+a^{2}\right)}$
Q. $9 \frac{x^{5}}{x^{4}-1}$
Q. $10 \frac{x^{2}+x+1}{\left(x^{2}-x-2\right)\left(x^{2}-2\right)}$
Q. $11 \frac{1}{x^{3}-1}$
Q. $12 \frac{x^{2}+3 x+3}{\left(x^{2}-1\right)\left(x^{2}+4\right)}$

Answers 4.3

Q. $1 \frac{1}{x-2}+\frac{3}{x^{2}+5} \quad$ Q. $2 \quad \frac{1}{x+1}-\frac{1}{x^{2}+3}$
Q. $3-\frac{1}{5(x+3)}+\frac{x+12}{5\left(x^{2}+1\right)}$
Q. $4 \frac{1}{3(x+1)}-\frac{(x-2)}{3\left(x^{2}-x+1\right)}$
Q. $5 \frac{1}{2(x+1)}-\frac{x-1}{2\left(x^{2}+1\right)}$
Q. $6 \frac{13}{28(X-2)}-\frac{1}{12(X+2)}-\frac{8 X+31}{21\left(X^{2}+X+1\right)}$
Q. $7 \frac{1}{x+1}+\frac{2 x-2}{x^{2}-x+3}$
Q. $8 \frac{1}{a^{3}}\left[\frac{1}{X-a}+\frac{x}{X^{2}+a^{2}}-\frac{2}{X}-\frac{a}{X^{2}}\right]$
Q. $9 \quad x+\frac{1}{4(x-1)}+\frac{1}{4(x+1)}-\frac{x}{2\left(x^{2}+1\right)}$
Q. $10 \frac{1}{3(x+1)}+\frac{7}{6(x-2)}-\frac{3 x+2}{2\left(x^{2}-2\right)}$
Q. $11 \frac{1}{3(x-1)}-\frac{x+2}{3\left(x^{2}+x+1\right)}$
Q. $12 \frac{7}{10(x-1)}-\frac{1}{10(x+1)}-\frac{3 x-1}{5\left(x^{2}+4\right)}$

Partial Fractions

9.11 Type IV: Quadratic repeated factors

When the denominator has repeated Quadratic factors.
Example 1:
Resolve into partial fraction $\frac{x^{2}}{(1-x)\left(1+x^{2}\right)^{2}}$

Solution:

$$
\frac{x^{2}}{(1-x)\left(1+x^{2}\right)^{2}}=\frac{A}{1-x}+\frac{B x+C}{\left(1+x^{2}\right)}+\frac{D x+E}{\left(1+x^{2}\right)^{2}}
$$

Multiplying both sides by L.C.M. i.e., $(1-x)\left(1+x^{2}\right)^{2}$ on both sides, we have

$$
\begin{align*}
& x^{2}=A\left(1+x^{2}\right)^{2}+(B x+C)(1-x)\left(1+x^{2}\right)+(D x+E)(1-x) \quad \ldots \ldots \tag{i}\\
& x^{2}=A\left(1+2 x^{2}+x^{4}\right)+(B x+C)\left(1-x+x^{2}-x^{3}\right)+(D x+E)(1-x)
\end{align*}
$$

Put $1-x=0 \Rightarrow x=1$ in eq. (i), we have
$(1)^{2}=\mathrm{A}\left(1+(1)^{2}\right)^{2}$

$$
\begin{align*}
& 1=4 \mathrm{~A} \quad \Rightarrow \quad \mathrm{~A}=\frac{1}{4} \\
& \mathrm{x}^{2}=\mathrm{A}\left(1+2 \mathrm{x}^{2}+\mathrm{x}^{4}\right)+\mathrm{B}\left(\mathrm{x}-\mathrm{x}^{2}+\mathrm{x}^{3}-\mathrm{x}^{4}\right)+\mathrm{C}\left(1-\mathrm{x}+\mathrm{x}^{2}-\mathrm{x}^{3}\right) \\
& +\mathrm{D}\left(\mathrm{x}-\mathrm{x}^{2}\right)+\mathrm{E}(1-\mathrm{x}) \tag{ii}
\end{align*}
$$

Comparing the co-efficient of like powers of x on both sides in Equation (II), we have

Co-efficient of $\mathrm{x}^{4} \quad: \quad \mathrm{A}-\mathrm{B}=0$
Co-efficient of $x^{3} \quad: \quad B-C=0$
Co-efficient of $\mathrm{x}^{2} \quad: \quad 2 \mathrm{~A}-\mathrm{B}+\mathrm{C}-\mathrm{D}=1$
Co-efficient of x : $\mathrm{B}-\mathrm{C}+\mathrm{D}-\mathrm{E}=0$
Co-efficient term : $A+C+E=0$
from (i),

$$
\mathrm{B}=\mathrm{A}
$$

$$
\Rightarrow \quad \mathrm{B}=\frac{1}{4} \quad \because \quad \mathrm{~A}=\frac{1}{4}
$$

from (i)

$$
\mathrm{B}=\mathrm{C}
$$

$$
\Rightarrow \quad \mathrm{C}=\frac{1}{4} \quad \because \quad \mathrm{C}=\frac{1}{4}
$$

from (iii)

$$
\mathrm{D}=2 \mathrm{~A}-\mathrm{B}+\mathrm{C}-1
$$

$$
=2\left(\frac{1}{4}\right)-\frac{1}{4}+\frac{1}{4}-1
$$

$\Rightarrow \quad \mathrm{D}=-\frac{1}{2}$
from (v)

$$
\mathrm{E}=-\mathrm{A}-\mathrm{C}
$$

$$
E=-\frac{1}{4}-\frac{1}{4}=-\frac{1}{2}
$$

Hence the required partial fractions are by putting the values of $\mathrm{A}, \mathrm{B}, \mathrm{C}$, D, E,

$$
\begin{aligned}
& \frac{\frac{1}{4}}{1-x}+\frac{\frac{1}{4} x+\frac{1}{4}}{1+x^{2}}+\frac{-\frac{1}{2} x-\frac{1}{2}}{\left(1+x^{2}\right)^{2}} \\
& \frac{1}{4(1-x)}+\frac{(x+1)}{4\left(1+x^{2}\right)}-\frac{x+1}{2\left(1+x^{2}\right)^{2}}
\end{aligned}
$$

Example 2:

Resolve into partial fractions $\frac{x^{2}+x+2}{x^{2}\left(x^{2}+3\right)^{2}}$

Solution:

Let $\quad \frac{x^{2}+x+2}{x^{2}\left(x^{2}+3\right)^{2}}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C x+D}{x^{2}+3}+\frac{E x+F}{\left(x^{2}+3\right)^{2}}$
Multiplying both sides by L.C.M. i.e., $x^{2}\left(x^{2}+3\right)^{2}$, we have

$$
\begin{aligned}
x^{2}+x+2= & A x\left(x^{2}+3\right)^{2}+B\left(x^{2}+3\right)^{2} \\
& +(c x+D) x^{2}\left(x^{2}+3\right)+(E x+F)\left(x^{2}\right)
\end{aligned}
$$

Putting $\mathrm{x}=0$ on both sides, we have

$$
\begin{array}{l|l}
2=\mathrm{B}(0+3)^{2} \\
2=9 \mathrm{~B} \Rightarrow
\end{array} \quad \mathrm{~B}=\frac{2}{9}
$$

Now $x^{2}+x+2=A x\left(x^{4}+6 x^{2}+9\right)+B\left(x^{4}+6 x^{2}+9\right)$

$$
\begin{aligned}
&+C\left(x^{5}+3 x^{2}\right)+D\left(x^{4}+3 x^{2}\right)+E\left(x^{3}\right)+F x^{2} \\
& x^{2}+x+2=(A+C) x^{5}+(B+D) x^{4}+(6 A+3 C+E) x^{3} \\
&+(6 B+3 D+F) x^{2}+(x+9 B)
\end{aligned}
$$

Comparing the co-efficient of like powers of x on both sides of Eq. (I), we have

$$
\text { Co-efficient of } x^{5} \quad: \quad A+C=0
$$

(i)

Co-efficient of $\mathrm{x}^{4} \quad$: $\quad B-D=0$
(ii)

Co-efficient of $\mathrm{x}^{3} \quad: \quad 6 \mathrm{~A}+3 \mathrm{C}+\mathrm{E}=0$
(iii)

Co-efficient of $\mathrm{x}^{2} \quad: \quad 6 \mathrm{~B}+3 \mathrm{D}+\mathrm{F}=1$
(iv)

Co-efficient of $x \quad: \quad 9 \mathrm{~A}=1$
Co-efficient term : $9 B=1$
(vi)
from (v)

$$
9 \mathrm{~A}=1
$$

\Rightarrow

$$
\mathrm{A}=\frac{1}{9}
$$

from (i)

$$
A+C=0
$$

$$
\mathrm{C}=-\mathrm{A}
$$

$\Rightarrow \quad \mathrm{C}=-\frac{1}{9}$
from (i)

$$
B+D=0
$$

$$
D=-B
$$

$\Rightarrow \quad D=-\frac{2}{9}$
from (iii) $6 \mathrm{~A}+3 \mathrm{C}+\mathrm{E}=$

$$
\begin{aligned}
& 6\left(\frac{1}{9}\right)+3\left(-\frac{1}{9}\right)+E=0 \\
& E=\frac{3}{9}-\frac{6}{9} \\
& \Rightarrow \quad E=-\frac{1}{3}
\end{aligned}
$$

from (iv) $6 \mathrm{~B}+3 \mathrm{D}+\mathrm{F}=1$

$$
\begin{aligned}
& \mathrm{F}=1-6 \mathrm{~B}-3 \mathrm{D} \\
&=1-6\left(\frac{2}{9}\right)-3\left(\frac{2}{9}\right) \\
&=1-\frac{12}{9}+\frac{6}{9} \\
& \Rightarrow \quad \mathrm{~F}=\frac{1}{3}
\end{aligned}
$$

Hence the required partial fractions are

$$
\begin{aligned}
& \frac{1}{9} \\
& \frac{x}{x}+\frac{\frac{2}{9}}{x^{2}}+\frac{-\frac{1}{9} x-\frac{2}{9}}{x^{2}+3}+\frac{-\frac{1}{3} x+\frac{1}{3}}{\left(x^{2}+3\right)^{2}} \\
& =\frac{1}{9 x}+\frac{2}{9 x^{2}}-\frac{x+2}{9\left(x^{2}+3\right)}-\frac{x-1}{3\left(x^{2}+3\right)^{2}}
\end{aligned}
$$

Exercise 4.4

Resolve into Partial Fraction:

Q. $1 \frac{7}{(x+1)\left(x^{2}+2\right)^{2}}$
Q. $2 \frac{x^{2}}{(1+x)\left(1+x^{2}\right)^{2}}$
Q. $3 \frac{5 x^{2}+3 x+9}{x\left(x^{2}+3\right)^{2}}$
Q. $4 \frac{4 x^{4}+3 x^{3}+6 x^{2}+5 x}{(x-1)\left(x^{2}+x+1\right)^{2}}$
Q. $5 \frac{2 x^{4}-3 x^{2}-4 x}{(x+1)\left(x^{2}+2\right)^{2}}$
Q. $6 \frac{x^{3}-15 x^{2}-8 x-7}{(2 x-5)\left(1+x^{2}\right)^{2}}$
Q. $7 \frac{49}{(x-2)\left(x^{2}+3\right)^{2}}$
Q. $8 \frac{8 x^{2}}{\left(1-x^{2}\right)\left(1+x^{2}\right)^{2}}$
Q. $9 \frac{\mathrm{x}^{4}+\mathrm{x}^{3}+2 \mathrm{x}^{2}-7}{(\mathrm{x}+2)\left(\mathrm{x}^{2}+\mathrm{x}+1\right)^{2}}$
Q. $10 \frac{\mathrm{x}^{2}+2}{\left(\mathrm{x}^{2}+1\right)\left(\mathrm{x}^{2}+4\right)^{2}}$
Q. $11 \frac{1}{x^{4}+x^{2}+1}$

Answers 4.4
Q. $1 \quad \frac{7}{9(x+1)}-\frac{7 x-7}{9\left(x^{2}+2\right)}-\frac{7 x-7}{3\left(x^{2}+2\right)^{2}}$
Q. $2 \frac{1}{4(1+x)}-\frac{x-1}{4\left(1+x^{2}\right)}+\frac{x-1}{2\left(1+x^{2}\right)^{2}}$
Q. $3 \frac{1}{x}-\frac{x}{x^{2}+3}+\frac{2 x+3}{\left(x^{2}+3\right)^{2}}$
Q. $4 \quad \frac{2}{x-1}+\frac{2 x-1}{x^{2}+x+1}+\frac{3}{\left(x^{2}+x+1\right)^{2}}$
Q. $5 \frac{1}{3(x+1)}+\frac{5(x-1)}{3\left(x^{2}+2\right)}-\frac{2(3 x-1)}{\left(x^{2}+1\right)^{2}}$
Q. $6-\frac{2}{2 x-5}+\frac{x+3}{1+x^{2}}+\frac{x-2}{\left(1+x^{2}\right)^{2}}$
Q. $7 \frac{1}{x-2}-\frac{x+2}{x^{2}+3}-\frac{7 x+14}{\left(x^{2}+3\right)^{2}}$
Q. $8 \frac{1}{1-\mathrm{x}}+\frac{1}{1+\mathrm{x}}+\frac{2}{1+\mathrm{x}^{2}}-\frac{4}{\left(1+\mathrm{x}^{2}\right)^{2}}$
Q. $9 \frac{1}{x+2}+\frac{2 x-3}{\left(x^{2}+x+1\right)^{2}}-\frac{1}{x^{2}+x+1}$
Q. $10 \frac{1}{9\left(x^{2}+1\right)}-\frac{1}{9\left(x^{2}+4\right)}+\frac{2}{3\left(x^{2}+4\right)^{2}}$
Q. $11-\frac{(x-1)}{2\left(\mathrm{x}^{2}-\mathrm{x}+1\right)}+\frac{(\mathrm{x}+1)}{2\left(\mathrm{x}^{2}+\mathrm{x}+1\right)}$

Summary

Let $N(x) \neq$ and $D(x) \neq 0$ be two polynomials. The $\frac{N(x)}{D(x)}$ is called a proper fraction if the degree of $N(x)$ is smaller than the degree of $D(x)$.

For example: $\frac{x-1}{x^{2}+5 x+6}$ is a proper fraction.
Also $\frac{N\left(x^{1}\right)}{D(x)}$ is called an improper fraction of the degree of $N(x)$ is greater than or equal to the degree of $D(x)$.
For example: $\frac{x^{5}}{x^{4}-1}$ is an improper fraction.
In such problems we divide $\mathrm{N}(\mathrm{x})$ by $\mathrm{D}(\mathrm{x})$ obtaining a quotient $\mathrm{Q}(\mathrm{x})$ and a remainder $R(x)$ whose degree is smaller than that of $D(x)$.
Thus $\frac{N(x)^{\prime}}{D(x)}=Q(x)+\frac{R(x)}{D(x)}$ where $\frac{R(x)^{\prime}}{D(x)}$ is proper fraction.
Types of proper fraction into partial fractions.
Type 1: \quad Linear and distinct factors in the $D(x)$

$$
\frac{x-a}{(x+a)(x+b)}=\frac{A}{x+a}+\frac{B}{x+b}
$$

Type 2: \quad Linear repeated factors in $D(x)$

$$
\frac{x-a}{(x+a)\left(x^{2}+b^{2}\right)}=\frac{A}{x+a}+\frac{B x+C}{x^{2}+b^{2}}
$$

Type 3: \quad Quadratic Factors in the $D(x)$

$$
\frac{x-a}{(x+a)\left(x^{2}+b\right)^{2}}=\frac{A}{x+a}+\frac{B x+C}{x^{2}+b^{2}}
$$

Type 4: \quad Quadratic repeated factors in $D(x)$:

$$
\frac{x-a}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}=\frac{A x+B}{x^{2}+a^{2}}+\frac{C x+D}{x^{2}+b^{2}}+\frac{E x+F}{\left(x^{2}+b^{2}\right)^{2}}
$$

Short Questions:

Write the short answers of the following:
Q.1: What is partial fractions?
Q.2: Define proper fraction and give example.
Q.3: Define improper fraction and given one example:
Q.4: Resolve into partial fractions $\frac{2 \mathrm{x}}{(\mathrm{x}-2)(\mathrm{x}+5)}$
Q.5: Resolve into partial fractions: $\frac{1}{x^{2}-x}$
Q.6: Resolve $\frac{7 x+25}{(x+3)(x+4)}$ into partial fraction.
Q.7: Resolve $\frac{1}{\mathrm{x}^{2}-1}$ into partial fraction:
Q.8: Resolve $\frac{x^{2}+1}{(x+1)(x-1)}$ into partial fractions.
Q.9: Write an identity equation of $\frac{8 x^{2}}{\left(1-x^{2}\right)\left(1+x^{2}\right)^{2}}$
Q.10: Write an identity equation of $\frac{2 x+5}{x^{2}+5 x+6}$
Q.11: Write identity equation of $\frac{x-5}{(x+1)\left(x^{2}+3\right)}$
Q.12: Write an identity equation of $\frac{6 x^{3}+5 x^{2}-7}{3 x^{2}-2 x-1}$
Q.13: Write an identity equation of $\frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-6)}$
Q.14: Write an identity equation of $\frac{x^{5}}{x^{4}-1}$
Q.15: Write an identity equation of $\frac{2 \mathrm{x}^{4}-3 \mathrm{x}^{2}-4 \mathrm{x}}{(\mathrm{x}+1)\left(\mathrm{x}^{2}+2\right)^{2}}$

Q16. Form of partial fraction of $\frac{1}{(x+1)(x-2)}$ is \qquad -
Q.17. Form of partial fraction of $\frac{1}{(x+1)^{2}(x-2)}$ is \qquad
Q.18. Form of partial fraction of $\frac{1}{\left(x^{2}+1\right)(x-2)}$ is \qquad
Q.19. Form of partial fraction of $\frac{1}{\left(x^{2}+1\right)(x-4)^{2}}$ is
\qquad
Q.20. Form of partial fraction of $\frac{1}{\left(x^{3}-1\right)\left(x^{2}+1\right)}$ is \qquad .

Answers

Q4. $\frac{4}{7(\mathrm{x}-2)}-\frac{10}{7(\mathrm{x}+5)}$ Q5. $\quad \frac{-1}{\mathrm{x}}+\frac{1}{\mathrm{x}-1}$
Q6. $\frac{4}{\mathrm{x}+3}+\frac{3}{\mathrm{x}+4}$ Q7. $\frac{1}{x^{2}-1}=\frac{1}{2(x-1)}-\frac{1}{2(x+1)}$
Q8. $1+\frac{1}{\mathrm{x}+1}+\frac{1}{\mathrm{x}-1}$ Q9. $\frac{A}{1-x}+\frac{B}{1+x}+\frac{C x+D}{1+x^{2}}+\frac{E x+F}{\left(1+x^{2}\right)^{2}}$
Q10. $\frac{A}{x+2}+\frac{B}{x+3}$
Q11. $\frac{A}{x+1}+\frac{B x+C}{x^{2}+3}$
Q12. $(2 x+3)+\frac{A}{x-1}+\frac{B}{3 x+1} \quad$ Q13. $\quad 1+\frac{A}{4-4}+\frac{B}{x-5}+\frac{C}{x-6}$
Q14. $\mathrm{x}+\frac{\mathrm{A}}{\mathrm{x}-1}+\frac{\mathrm{B}}{\mathrm{x}+1}+\frac{\mathrm{Cx}+\mathrm{D}}{\mathrm{x}^{2}+1}$ Q15. $\frac{\mathrm{A}}{\mathrm{x}+1}+\frac{\mathrm{Bx}+\mathrm{C}}{\mathrm{x}^{2}+2}+\frac{\mathrm{Dx}+\mathrm{E}}{\left(\mathrm{x}^{2}+2\right)^{2}}$
Q16. $\frac{A}{x+1}+\frac{B}{x-2}$
Q17.

$$
\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{x-2}
$$

Q18. $\frac{\mathrm{Ax}+\mathrm{B}}{\mathrm{x}^{2}+1}+\frac{\mathrm{C}}{\mathrm{x}-2}$
Q19.

$$
\frac{\mathrm{Ax}+\mathrm{B}}{\mathrm{x}^{2}+1}+\frac{\mathrm{C}}{\mathrm{x}-1}+\frac{\mathrm{D}}{(\mathrm{x}-1)^{2}}
$$

$$
\text { Q20. } \frac{\mathrm{A}}{(\mathrm{x}-1)}+\frac{\mathrm{Bx}+\mathrm{C}}{\left(\mathrm{x}^{2}+\mathrm{x}+1\right)}+\frac{\mathrm{Dx}+\mathrm{E}}{\mathrm{x}^{2}+1}
$$

Objective Type Questions

Q. 1 Each questions has four possible answers. Choose the correct answer and encircle it.

_1. If the degree of numerator $N(x)$ is equal or greater than the degree of denominator $\mathrm{D}(\mathrm{x})$, then the fraction is:
(a) proper
(b) improper
(c) Neither proper non-improper
(d) Both proper and improper
_2. If the degree of numerator is less than the degree of denominator, then the fraction is:
(a) Proper
(b) Improper
(c) Neither proper non-improper
(d) Both proper and improper
_3. The fraction $\frac{2 x+5}{x^{2}+5 x+6}$ is known as:
(a) Proper
(b) Improper
(c) Both proper and improper
(d) None of these
_4. The number of partial fractions of $\frac{6 x+27}{4 x^{3}-9 x}$ are:
(a) 2
(b) 3
(c) 4
(d) None of these
_5. The number of partial fractions of $\frac{x^{3}-3 x^{2}+1}{(x-1)(x+1)\left(x^{2}-1\right)}$ are:
(a) 2
(b) 3
(c) 4
(d) 5
_6. The equivalent partial fraction of $\frac{x+11}{(x+1)(x-3)^{2}}$ is:
(a) $\frac{\mathrm{A}}{\mathrm{x}+1}+\frac{\mathrm{B}}{(\mathrm{x}-3)^{2}}$
(b) $\frac{A}{x+1}+\frac{B}{x-3}$
(c) $\frac{\mathrm{A}}{\mathrm{x}+1}+\frac{\mathrm{B}}{\mathrm{x}-3}+\frac{\mathrm{C}}{(\mathrm{x}-3)^{2}}$
(d) $\frac{A}{x+1}+\frac{B x+C}{(x-3)^{2}}$
_7. The equivalent partial fraction of $\frac{x^{4}}{\left(x^{2}+1\right)\left(x^{2}+3\right)}$ is:
(a) $\frac{A x+B}{x^{2}+1}+\frac{C x+D}{x^{2}+3}$
(b) $\frac{A x+B}{x^{2}+1}+\frac{C x}{x^{2}+3}$
(c) $1+\frac{\mathrm{Ax}+\mathrm{B}}{\mathrm{x}^{2}+1}+\frac{\mathrm{Cx}+\mathrm{D}}{\mathrm{x}^{2}+3}$
(d) $\frac{\mathrm{Ax}}{\mathrm{x}^{2}+1}+\frac{\mathrm{Bx}}{\mathrm{x}^{2}+3}$
_8. Partial fraction of $\frac{2}{x(x+1)}$ is:
(a) $\frac{2}{\mathrm{x}}-\frac{1}{\mathrm{x}+1}$
(b) $\frac{1}{\mathrm{x}}-\frac{2}{\mathrm{x}+1}$
(c) $\frac{2}{\mathrm{x}}-\frac{2}{\mathrm{x}+1}$
(d) $\frac{2}{\mathrm{x}}+\frac{2}{\mathrm{x}+1}$
-9. Partial fraction of $\frac{2 x+3}{(x-2)(x+5)}$ is called:
(a) $\frac{2}{x-2}+\frac{1}{x+5}$
(b) $\frac{3}{x-2}+\frac{1}{x+5}$
(c) $\frac{2}{x-2}+\frac{3}{x+5}$
(d) $\frac{1}{x-2}+\frac{1}{x+5}$
_10. The fraction $\frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-6)}$ is called:
(a) Proper
(ii) Improper
(c) Both proper and Improper
(iv) None of these

Answers:

1. b
2. a
3. a
4. b
5. c
6. c
7. c
8. c
9. d
10. B
