Preface

We are thankful to Almighty ALLAH Who has given us an opportunity to write the book, named 'Applied Mathematics-I' as Textbook, intending to cover the new syllabus for the first year students of Diploma of Associate Engineer (DAE)

Throughout the text, emphasis is on correct methods of computation, correct method for transposition of formulae, logical layout of solutions, neatness and clarity of arrangement of material and the systematic use of all the normal mathematical and other tables.

Topics covered include algebra, trigonometry, vectors \& Phasors Algebra, Complex numbers, Number Systems, Boolean Algebra, Straight Line and The Circle.

Normally students face difficulty in solving complicated problems because they do not make a systematic attempt. We have attempted to help the students to overcome the difficulty by providing detailed instructions for an orderly approach. Difficult procedures and types of problems appearing in the exercise are illustrated by carefully explained examples. In the presentation of these illustrated examples, we have avoided unnecessary explanations. It is hoped that this book will help to give students a good foundation in old and new techniques.

Students are reminded that in order to acquire a proper understanding of the subject and its application, it is necessary to learn a number of sound basic rules and methods.No scientific or engineering subject can be fully comprehended and satisfactorily studied without a sound mathematical background.

We would like to express, sincere and thanks to Mr.Jawad Ahmed Qureshi Chief Operating Officer TEVTA,Engr. Mr.Azhar Iqbal Shad G.M Academic,Engr.Mazhar Abbas Naqvi Manager (Curriculum) and Engr. Syed Muhammad Waqar ud- Din Deputy Director(technical) Curriculum Section Acade mics Wing, who took keen interest and inspired us for the completion of this task.

We made every effort to make the book valuable both for students and teachers, however we shall gratefully welcome to receive any suggestion for the further improvement of the book.

A Textbook of

APPLIED

MATHEMATICS-I

Math-123

Authors

Sanaullah Khan
Associate Professor
Govt. College of Tech.
RailwayRoad Lahore
Tahir Hameed
Assistant Professor
Govt. College of Tech. Raiwind Road, Lahore
Nasir -ud-Din Mehmood
Assistant Professor
Govt. College of Tech.
for Printing\&Graphic Arts

Revised by

Muhammad Javaid Iqbal
Associate Professor
Govt. College of Tech.
RailwayRoad Lahore

Tanvir Haider
Assistant Professor
Govt. College of Tech.
Raiwind Road Lahore

PAPER A From Chapter 1 to 7

Chapter 1 Quadratic Equation 1 - 26

1.1 Equation:
1.2 Degree of an Equation
1.3 Polynomial Equation of Degree n
1.4 Linear and Cubic Equation
1.5 Quadratic Equation
1.6 Roots of the Equation
1.7 Methods of Solving Quadratic Equation

Exercise 1.1
1.8 Classification of Numbers
1.9 Nature of the roots of the Equation
1.10 Sum and Product of the Roots

Exercise 1.3
1.11 Formation of Quadratic Equation from the given roots

Exercise 1.4
Summary
Short Questions
Objective Type Questions

Chapter 2 Binomial Theorem 27 - 47

2.1 Introduction
2.2 Factorial of a Positive Integer
2.3 Combination
2.4 The Binomial Theorem
2.5 General Term
3.6 Middle Term in the Expansion $(a+b)^{n}$

Exercise 2.1

2.7 Binomial Series
2.8 Application of the Binomial Series; Approximations:

Exercise 2.2
Summary
Short Questions
Objective Type Questions

Chapter 3 Fundamentals of Trigonometry 48 -82

3.1 Introduction
3.2 Types of Trigonometry
3.3 Angle
3.4 Quadrants
3.5 Measurement of Angles
3.6 Relation between Degree and Radian Measure
3.7 Relation between Length of a Circular Arc and the Radian Measure of its Central Angle
Exercise 3.1
3.8 Trigonometric Function and Ratios
3.9 Reciprocal Functions
3.10 Rectangular Co-ordinates and Sign Convention
3.11 Signs of Trigonometric Functions
3.12 Trigonometric Ratios of Particular Angles
Exercise 3.2
3.13 Fundamental Identities
Exercise 3.3
3.14 Graph of Trigonometric Functions
Summary
Short Questions
Objective Type Questions
Chapter 4 General Identities $83-113$
4.1 Introduction
4.2 Distance formula
4.3 Fundamental law of trigonometry
4.4 Deductions from fundamental law
Exercise 4.1
4.5 Double Angle Identities
4.6 Half Angle identities
4.7 Triple angle identities
Exercise 4.2
4.8 Conversion of sum of difference to products
4.9 Converting Products to Sum or Difference
Exercise 4.3
Short Questions
Objective Type Questions
Chapter 5 Solution of Triangles 114-134
5.1 Solution of Triangles
Exercise 5.1
5.2 Application of Right Angled Triangles
5.3 Angle of Elevation and Depression
Exercise 5.2
5.4 Law of Sines
Exercise 5.3
5.5 The Law of Cosines

Exercise 5.4

5.6 Solution of Oblique Triangles

Exercise 5.5

Summary
Short Questions
Objective Type Questions

Chapter 6
 Vectors and Scalars
 135-163

6.1 Introduction
6.2 Scalars and Vectors
6.3 Vector Representations
6.4 Types of Vectors
6.5 Addition and Subtraction of Vectors
6.6 Multiplication of a Vector by a Scalar
6.7 The Unit Vectors i, j, k (orthogonal system of unit Vectors)
6.8 Representation of a Vector in the form of Unit Vectors i, j and k .
6.9 Components of a Vector when the Tail is not at the Origin
6.10 Magnitude or Modulus of a Vector
6.11 Direction Cosines

Exercise 6.1
6.12 Product of Vectors
6.13 Rectangular form of $\vec{a} \times \vec{b}$ (Analytical expression of $\vec{a} \times \vec{b}$)

Exercise 6.2
Summary
Short Questions
Objective Type Question

Chapter 7
 PHASORS ALGEBRA
 164-183

7.1 Introduction

7.2 J as an Operator
7.3 Mathematical Representation of Phasors
7.4 Conjugate Complex Numbers
7.5 Addition and Subtraction of Complex Numbers (Or vectors)
7.6 Multiplication and Division
7.8 Powers and Roots of the Complex Numbers (Vectors)
7.9 Principle Roots
7.10 Derivation of Euler's Relation

Exercise 7

Summary
Short Questions
Objective Type Question

PAPER B From Chapter 8 to 19

Chapter
 Complex Numbers
 184-208

8.1 Introduction
8.2 Complex Number
8.3 Properties of Complex Number
8.4 Basic Algebraic Operation on Complex Numbers
8.5 Additive Inverse of a Complex Number
8.6 Multiplicative inverse of a complex number
8.7 Conjugate of a complex number

Exercise 8.1

8.8 Graphical Representation
8.8 Graphical Representation
8.9 Modulus of a Complex Number
8.10 Polar form of a complex number

Exercise 8.2

8.11 Multiplication and Division of Complex Numbers in Polar Form

Exercise 8.3

Summary
Short Questions
Objective Type Question

Chapter 9
 Partial Fractions
 209-231

9.1 Introduction
9.2 Partial fractions
9.3 Polynomial
9.4 Rational fraction
9.5 Proper Fraction
9.6 Improper Fraction
9.7 Process of Finding Partial Fraction
9.8 Type I

Exercise 9.1
9.9 Type II

Exercise 9.2
9.10 Type III

Exercise 9.3

9.11 Type IV

Exercise 9.4
Summary
Short Questions
Objective Type Questions

Chapter 10 Number Systems and

232-252
10.1 The Decimal Number System
10.2 The Binary Number System
10.3 Binary and Decimal Number Correspondence
10.4 Binary-to-Decimal Conversion
10.5 Decimal-to-Binary Conversion
10.6 Repeated Division-by-2 Or Multiplication-by-2 Method
10.7 Double-Dibble Technique
10.8 The Octal Number System
10.9 Octal-to-Decimal Conversion
10.10 Decimal-to-Octal Conversion
10.11 Repeated Division-by-8 Method
10.12 Repeated Multiplication-by-8 Method
10.13 Octal-to-Binary-Conversion
10.14 Octal and Binary Number Correspondence.
10.15 Binary-to-Octal Conversion
10.16 Binary Arithmetic

EXERCISE 10 Summary
Summary
Short Questions
Objective Type Questions

Chapter 11
 Boolean Algebra
 253-301

11.1 Introduction
11.2 Two Valued Logical Symbol
11.3 Fundamental Concepts of Boolean Algebra
11.4 Logical Addition
11.5 Logical Multiplication
11.6 Logic Gates
11.7 Basic Duality in Boolean Algebra
11.8 Fundamental Laws and Theorems of Boolean Algebra
11.9 De Morgan's Theorems
11.10 Sum of Product (Minterm)
11.11 Product of sum (Maxterm)
11.12 Fundamental Products
11.13 NAND and NOR gates
11.14 Combination of Gates
11.15 Boolean Expression and Logic Diagrams
11.16 Karnaugh Maps
11.17 Non-Unique Group
11.18 Redundant Groups
11.19 Dont' Care States
11.20 For the given truth table minimize the Boolean expression using Karnaugh map.

Exercise 11

Short Questions
Objective Type Questions

Chapter 12
 The Straight Line
 302 - 351

12.1 Introduction
12.2 Rectangular Coordinates
12.3 Polar Coordinates
12.4 Relation between Rectangular and Polar Coordinates
12.5 The Distance Formula (distance between two points)

Exercise 12.1

12.6 Segment of Line
12.7 The Ratio Formula (point of division)

Exercise 12.2
12.8 Inclination and Slope of a Line
12.9 Parallel and Perpendicular Lines
12.10 Angle Between Two Lines

Exercise 12.3

12.11 Equation of a Straight Line
12.12 Three Important Forms of the Equation of a Line

Exercise 12.4
12.13 The General Linear Equation
12.14 Reduction of General form $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$ to other forms.
12.15 Intersection of Two Lines
12.16 Concurrent Lines and Point of Concurrency

Exercise 12.5
12.17 The Distance from a Point to a Line

Exercise 12.6
Chapter 13 The Circle
13.1 Circle
13.2 Standard Form of the Equation of a Circle
13.3 Circle Determined by Three Conditions

Exercise 13
Short Questions
Objective Type Questions

